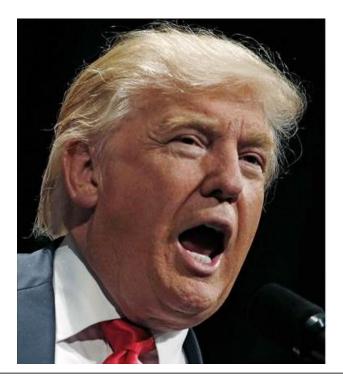


CHARACTERIZING POLITICALLY ENGAGED USERS' BEHAVIOR DURING THE 2016 US PRESIDENTIAL CAMPAIGN

Josemar Alves Caetano, Jussara Almeida, Humberto Torres Marques-Neto

Social networks and political campaings

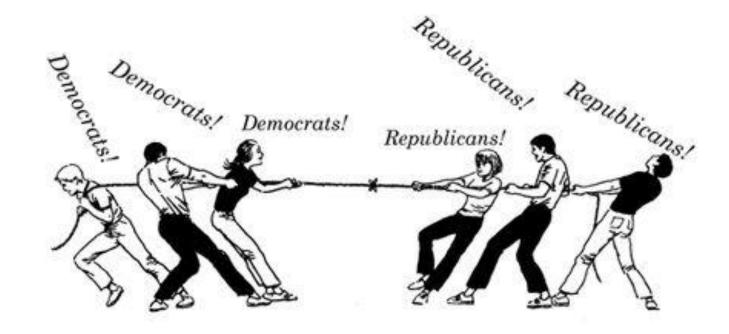
Reach of the candidates on Twitter (election day)



17 million followers35 thousand published tweets

12 million followers9 thousand published tweets

Political biases on social networks



Political biases on social networks

Advocates

Other political groups

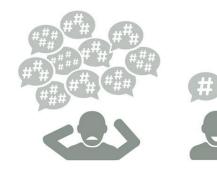
Political Bots

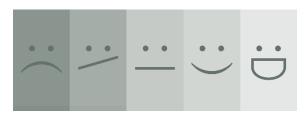
Regular Users

Main objective

Characterize users in an online social network taking into account political biases and therefore different behaviors

Characterizations

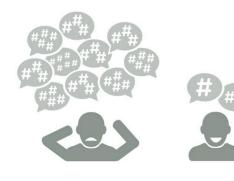


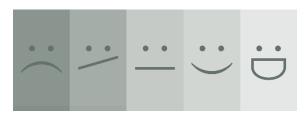


Which features highlight each group

Language Patterns Analysis Popular users of each group

Feature characterization



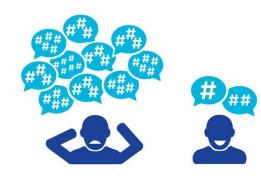


Which features highlight each group

Language Patterns Analysis

Popular users of each group

Language characterization

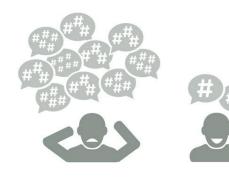


Which features highlight each group

Language Patterns Analysis

Popular users of each group

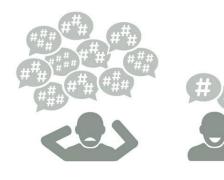
Profile characterization

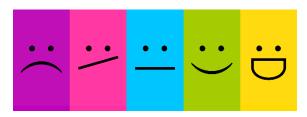


Which features highlight each group

Language Patterns Analysis Popular users of each group

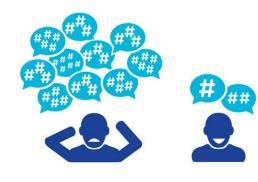
Mood characterization





Which features highlight each group Language Patterns Analysis Popular users of each group

To perform these characterizations...

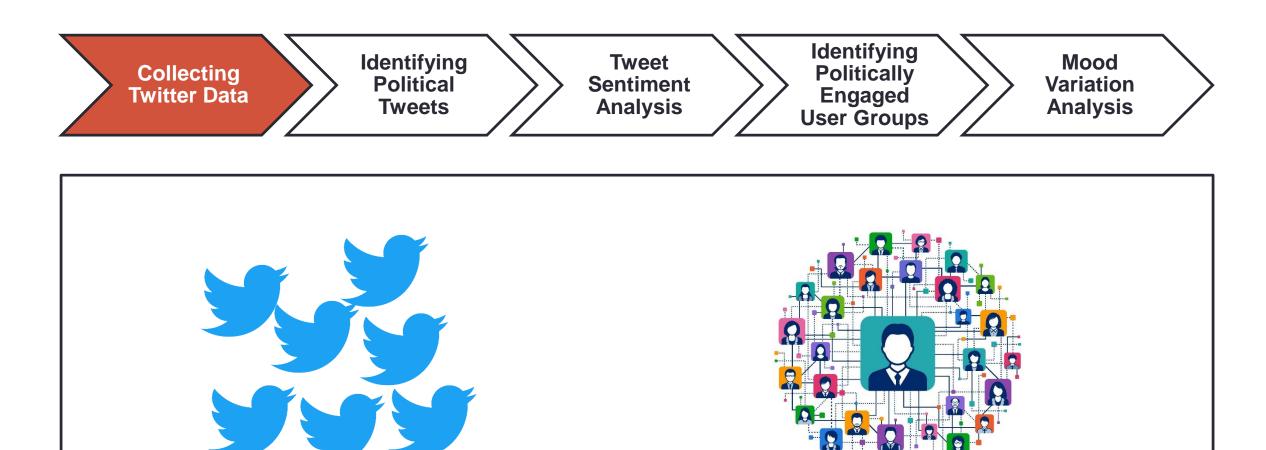


Which features highlight each group

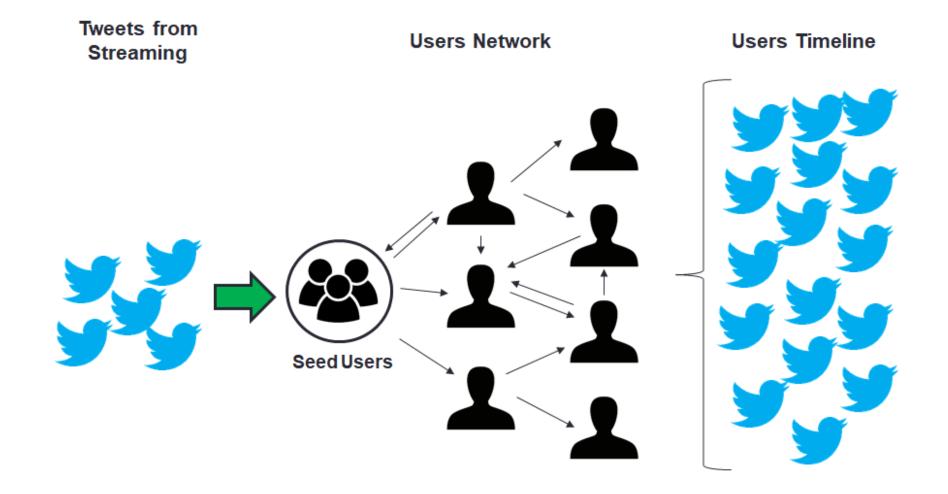
Language Patterns Analysis Popular users of each group

Methodology

Collecting Twitter data



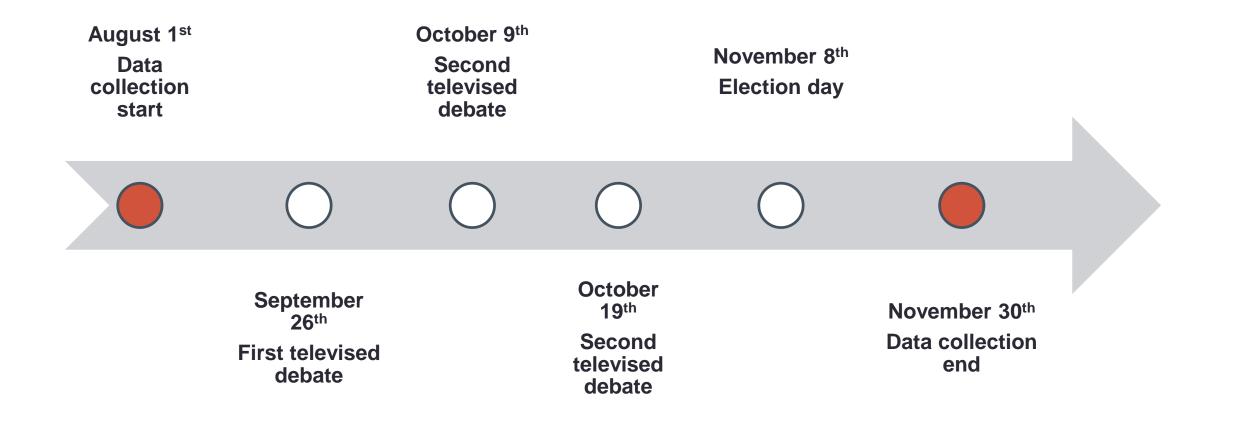
Data collection process



FirstHop SecondHop

Data collection period

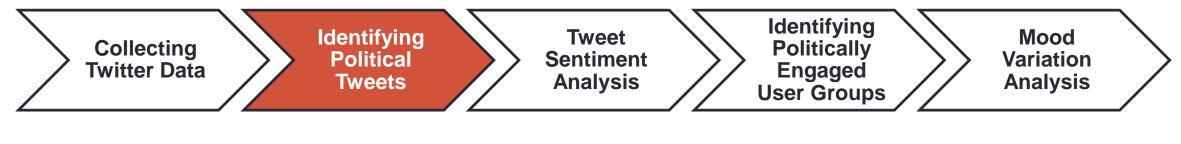
• Data collected over 122 days (August 1st to November 30th 2016)

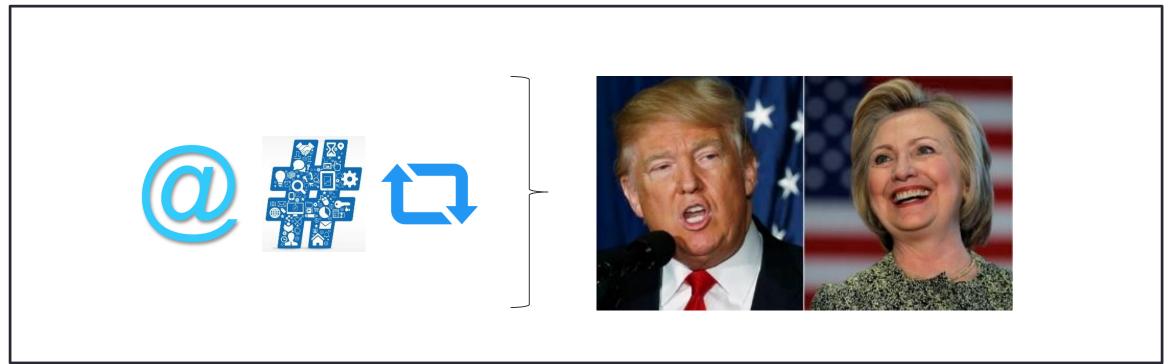


Dataset

# of tweets	23 mi
# of users	115 k
# of relationships	1.8 mi

Identifying political tweets





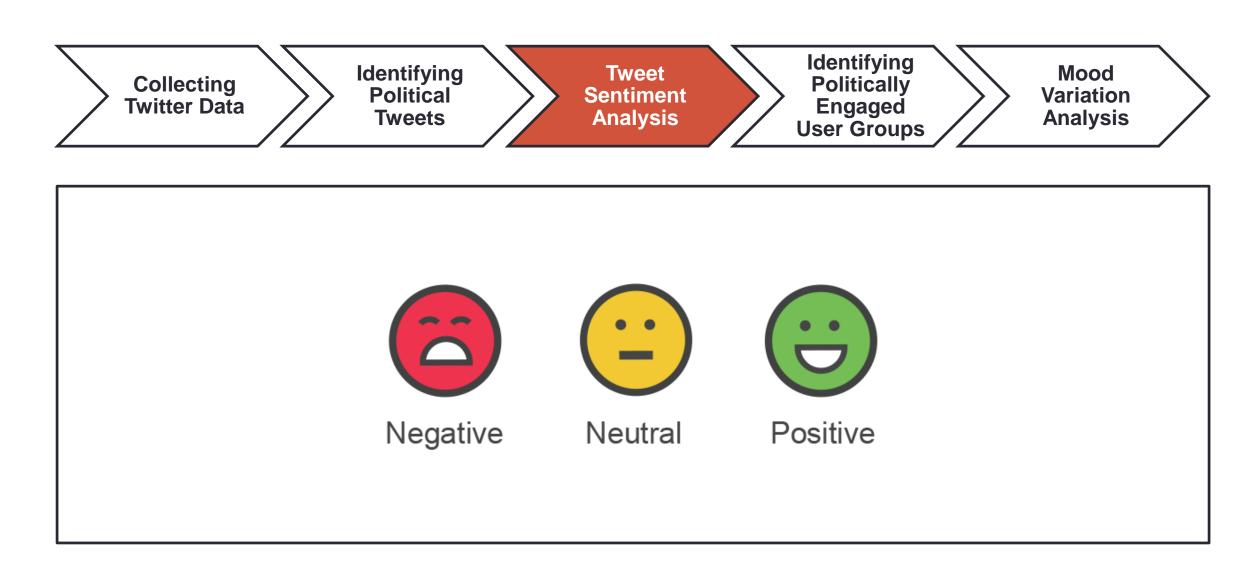
Candidates references considered

Donald Trump	Hillary Clinton
@realDonaldTrump	@HillaryClinton
Trump	Hillary
DT	HC

Political hashtags

	Donald Trump	Hillary Clinton
1	#Trump	#ImWithHer
2	#MAGA	#NeverTrump
3	#TrumpTrain	#Hillary
4	#TrumpPence16	#HillaryClinton
5	#DrainTheSwamp	#Hillary2016
6	#tcot	#UniteBlue
7	#Trump2016	#VoteBlue
8	#GOP	#HillaryBecause
9	#PJNET	#OHHillYes
10	#cco	#HillYes

Tweet sentiment analysis

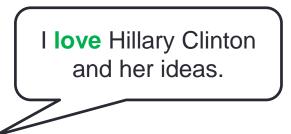


How sentiment analysis works?

SentiStrength tool

Dictionary containing emotional words

Political sentiment analysis



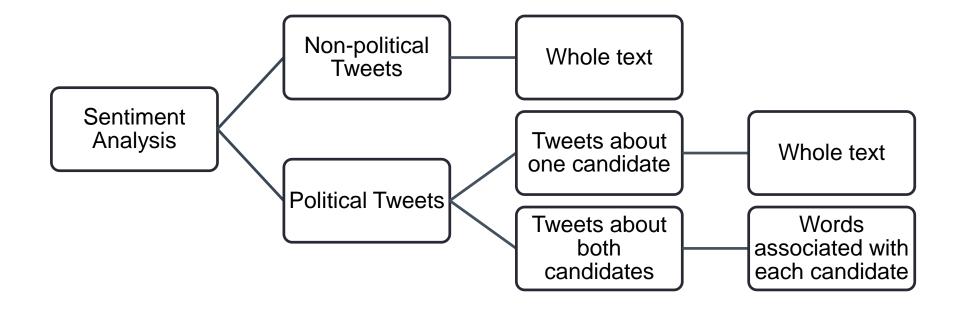
I hate Hillary Clinton and her ideas.

Political sentiment analysis problem

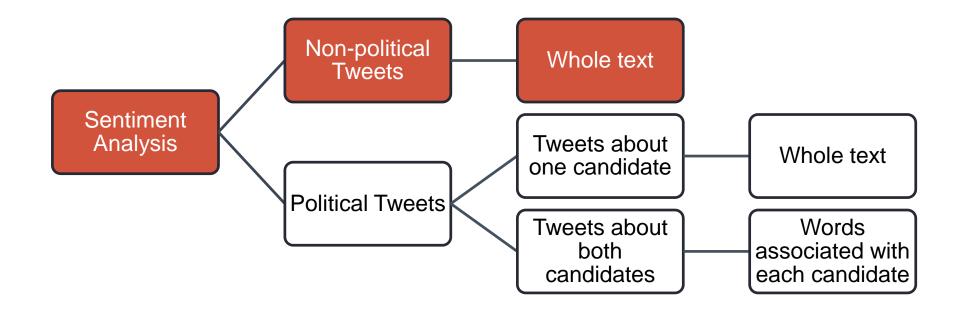


I hate Hillary Clinton but I love Donald Trump.

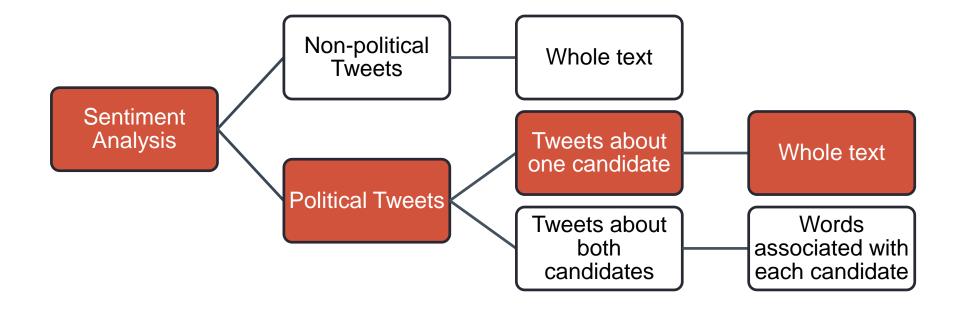
Sentiment analysis approaches



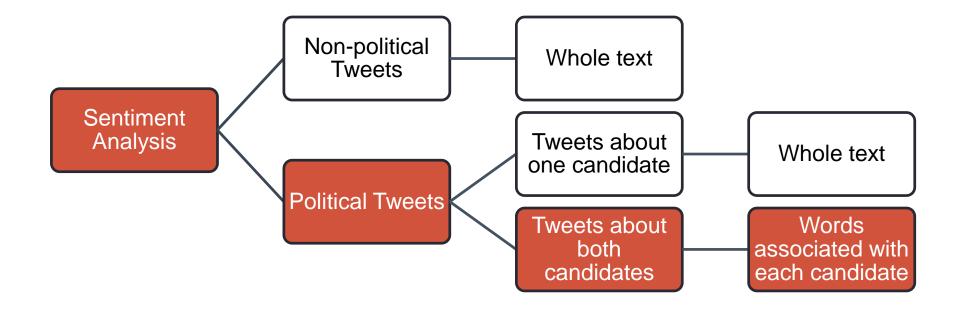
Non-political tweets



Political tweets about one candidate



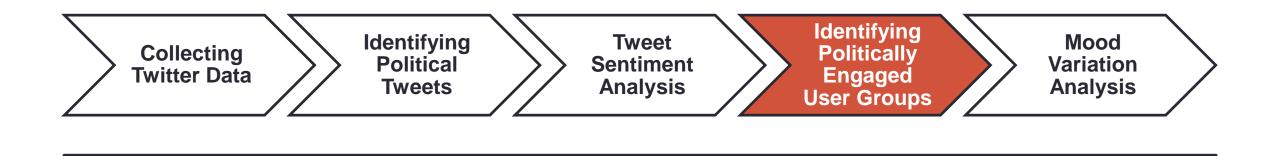
Political tweets about both candidates



Identifying words related to candidates

- Stanford Parser tool
 - Natural language processor

Identifying politically engaged user groups



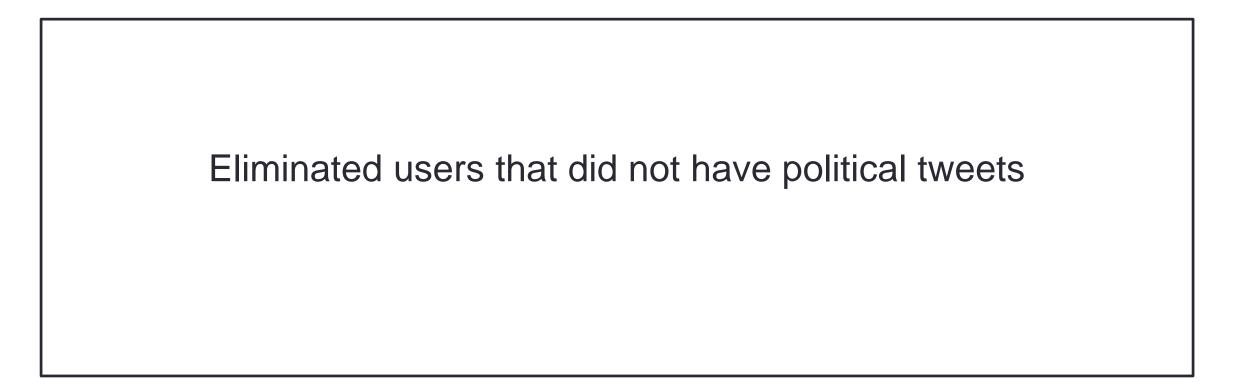
Hillary's Advocates Trump's Advocates

Regular Users

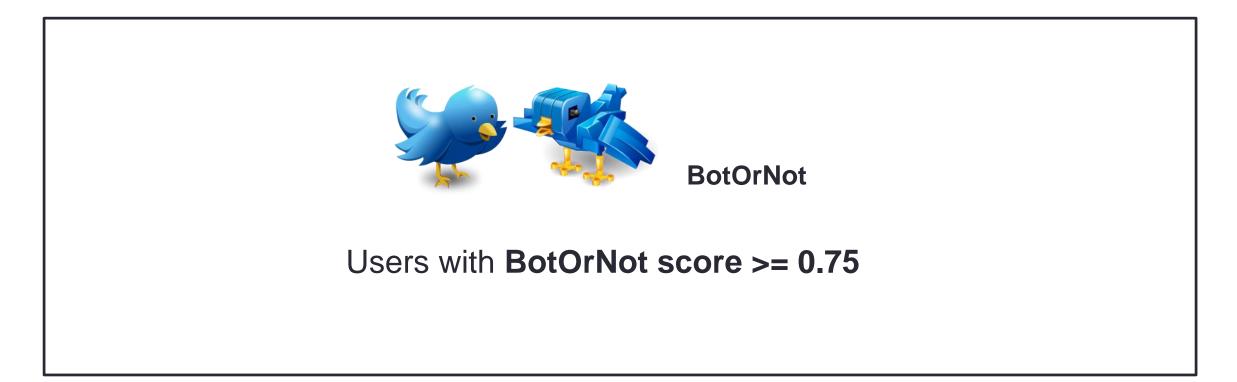
00

Data mining process

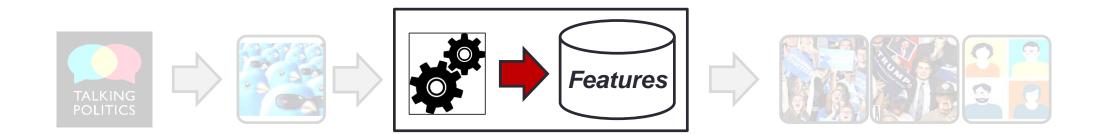
Removing outliers

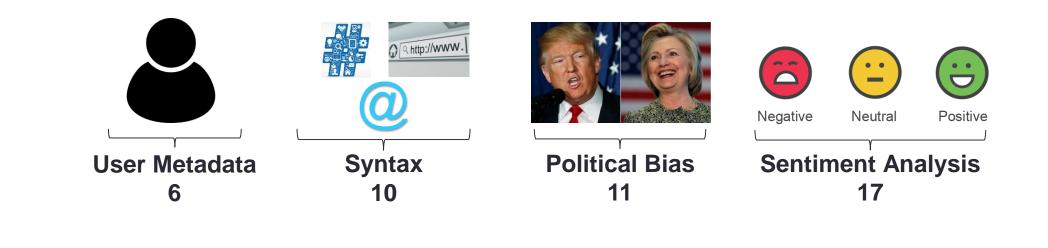


Identifying political bots

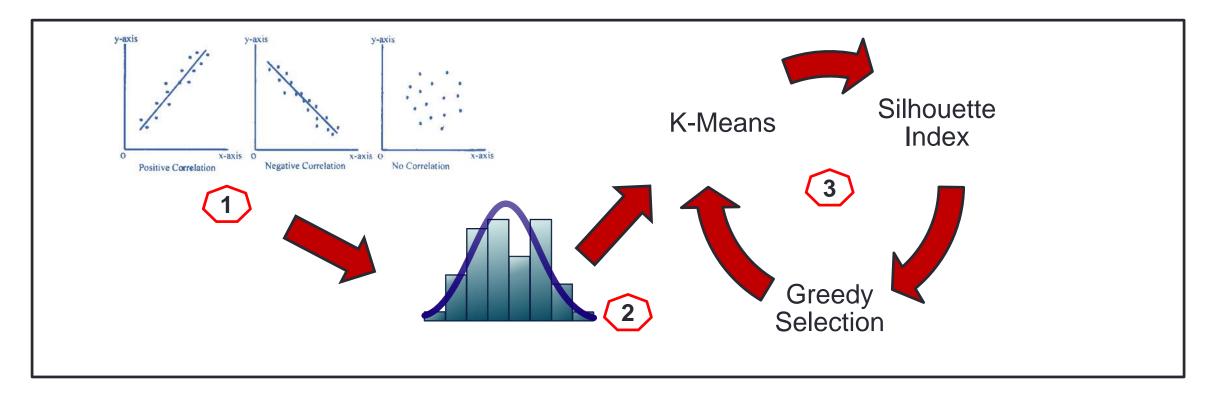


Feature set engineering

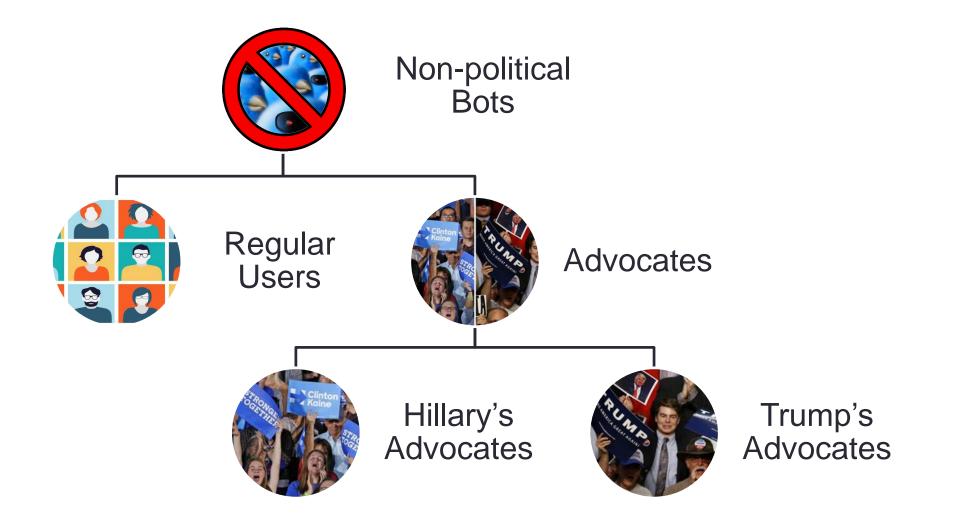




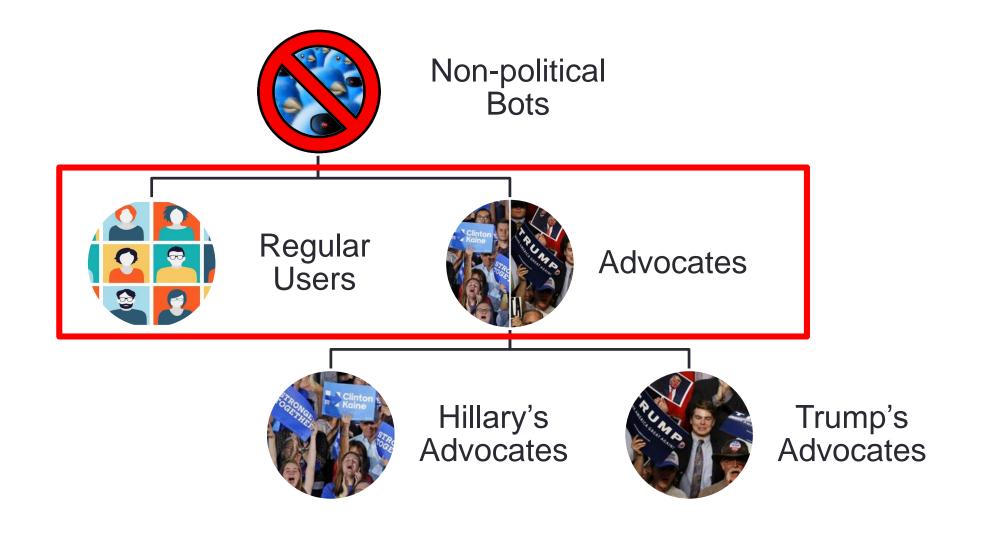
Identifying Regular Users, Trump's Advocates, and Hillary's Advocates



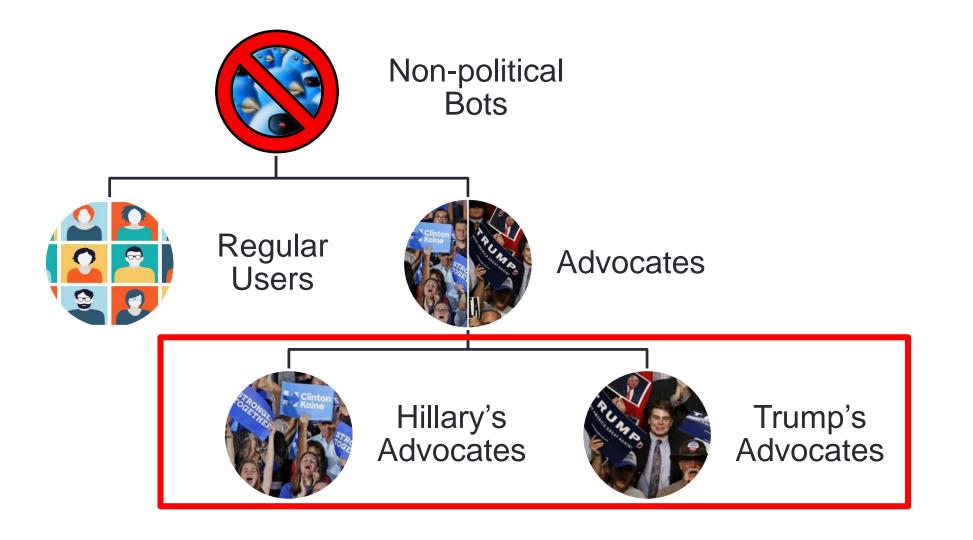
Two steps clustering



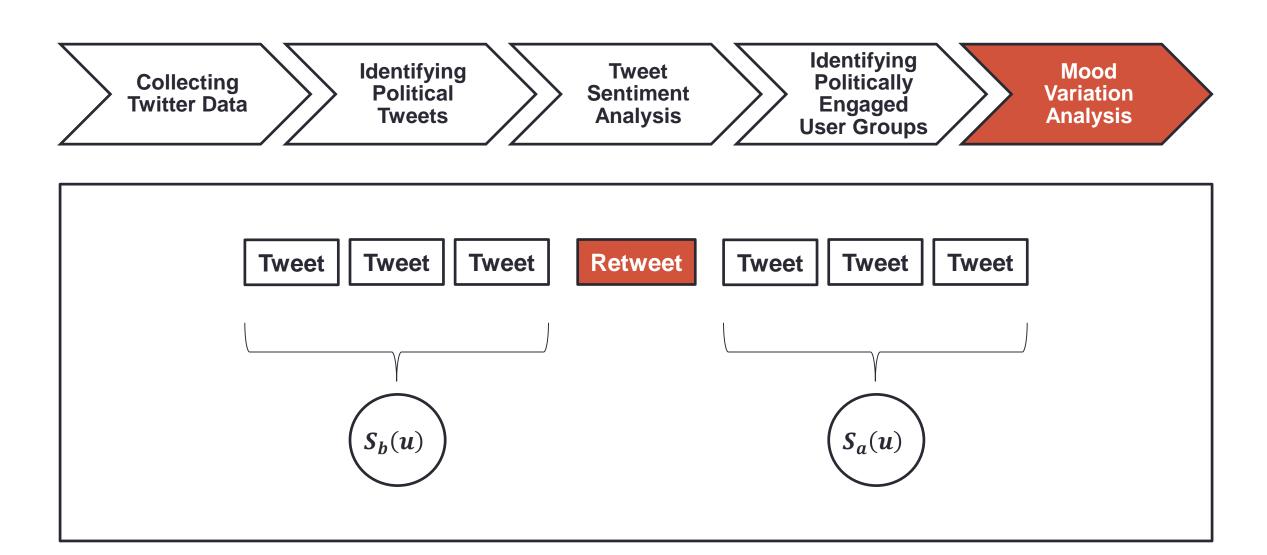
Identifying regular users and advocates



Identifying Trump's Advocates and Hillary's Advocates



Mood variation analysis



Subjective Well-Being definition

$$S_u(t_1, t_2) = \frac{N_{p_u}(t_1, t_2) - N_{n_u}(t_1, t_2)}{N_{p_u}(t_1, t_2) + N_{n_u}(t_1, t_2)}$$

- $N_{p_u}(t_1, t_2)$: positive tweets total
- $N_{n_u}(t_1, t_2)$: negative tweets total
- $S_u(t_1, t_2)$: $-1 \le S_u \le 1$

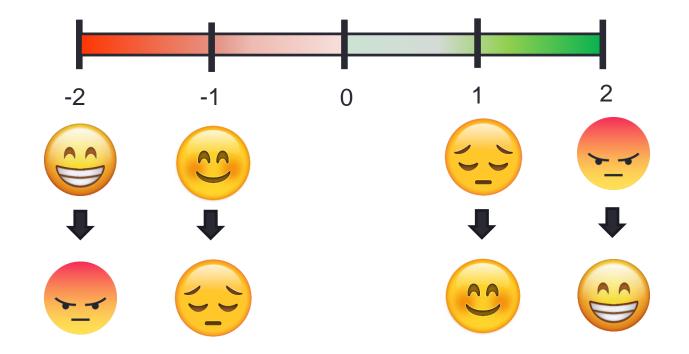
Mood variation definition

$$\Delta S_u = S_u(t, t + \delta) - S_u(t, t - \delta)$$

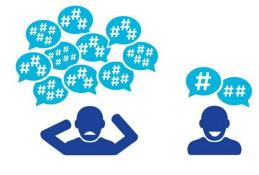
- $S_u(t, t + \delta)$: SWB after retweet
- $S_u(t, t \delta)$: SWB before retweet

•
$$\Delta_{S_u}$$
 values: $-2 \leq \Delta_{S_u} \leq 2$

What does it mean?



Results



Which features highlight each group

Language Patterns Analysis

Popular users of each group

Mood Variation Analysis

Clustering Regular Users and Advocates

	Regular Users (70,290)		Advocates (40,003)	
	μ	σ	μ	σ
political discourse	0.0871	0.4083	0.4614	1.5802
avg number of political hashtags related to Trump per tweet	-0.0005	0.0088	-0.0080	0.0297
avg number of political hashtags related to Hillary per tweet	-0.0066	0.0141	-0.0318	0.0385
positive/negative bias towards Trump	0.0759	0.0617	0.3431	0.1050
positive/negative bias towards Hillary	0.0833	0.4276	0.6592	2.1534

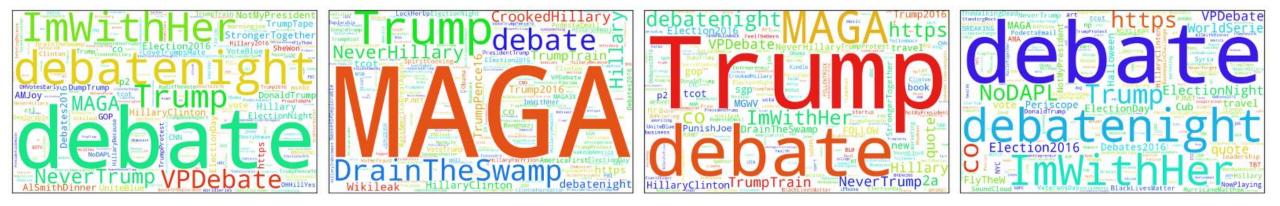
Sillhouette index: 0.81

Clustering Hillary's Advocates and Trump's Advocates

	Hillary's Advocates (26,230)		Trump's Advocates (13,733)	
	μ	δ	μ	σ
# hashtags in user's description	0.4030	0.1494	0.3516	0.1886
avg number of words per tweet	0.2787	0.1934	0.3429	0.1961
% tweets with some reference to Trump	0.5578	0.2349	0.7702	0.2532
% tweets with some reference to Hillary	0.8355	0.1864	0.6504	0.2624
std of the sentiment score of tweets with some reference to Trump	3.7241	4.8296	7.8192	5.2273
std of the sentiment score of tweets with some reference to Hillary	0.4692	1.4341	0.7009	1.7545

Sillhouette index: 0.72

Language patterns



Hillary's Advocates Trump's Advocates

Political Bots

Regular Users

Top 5 Hillary's Advocates

CNN @CNN

It's our job to #GoThere & tell the most difficult stories. Join us! For more breaking news updates follow @CNNBRK & Download our app 📲 https://t.co/Xgo5kjlt8c

Senator Tim Kaine @timkaine

U.S. Senator from Virginia. Husband and father of 3. Avid reader and outdoorsman. Bluegrass and harmonica enthusiast.

The New York Times @nytimes

Where the conversation begins. Follow for breaking news, special reports, RTs of our journalists and more from https://t.co/YapuoqX0HS.

The Hill @thehill

The Hill is the premier source for policy and political news. Follow for tweets on what's happening in Washington, breaking news and retweets of our reporters.

THE

ABC News @ABC

See the whole picture with @ABC News. Facebook: https://t.co/ewMNZ54axm Instagram: https://t.co/pPIGmNHztz

2

3

4

5

1

Top 5 Trump's Advocates

Bill Mitchell @mitchellvii

Host of YourVoice™ America at https://t.co/B7i6W1n0cB, Mon-Fri 7pm ET! Support the show: https://t.co/0cVNqg8Pts #TrustTrump

1

Tennessee @TEN_GOP

Unofficial Twitter of Tennessee Republicans. Covering breaking news, national politics, foreign policy and more. #MAGA #2A

4

5

Linda S

Linda Suhler, Ph.D. @LindaSuhler

I support PRESIDENT Donald Trump AMERICA FIRST Christian supports Family~Constitution~Capitalism~ 1A~2A~10A~NRA~Military~Police~Israel #PresidentTrump #MAGA=

BRIAN FRASER @bfraser747

PROUD Supporter of #PresidentTrump fighting one tweet at a time #MAGA !! Retweeted by @realDonaldTrump #AmericaFirst 🎫

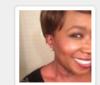
Lou Dobbs @LouDobbs

Lou Dobbs Tonight, Fox Business Network, 7 & 11 pm IG: https://t.co/Mqnxd3lgtA

Top 5 Political Bots

Twitter suspended the **top 10** Political Bots accounts

Top 5 Regular Users



Joy Reid @JoyAnnReid

"Ignorance, allied with power, is the most ferocious enemy justice can have." - James Baldwin #AMJoy #reiders

Kurt Eichenwald @kurteichenwald

Contributing editor, Vanity Fair; MSNBC Contributor, New York Times bestselling author.

WikiLeaks @wikileaks

We open governments // Contact: https://t.co/676V6mG02v // PGP: A04C 5E09 ED02 B328 03EB 6116 93ED 732E // Editor: @JulianAssange // Artwork: @WLArtForce

Bernie Sanders @SenSanders

Sen. Bernie Sanders is the longest serving independent in congressional history. Tweets ending in -B are from Bernie, and all others are from a staffer.

Chris Hayes @chrisIhayes

Host of All In with Chris Hayes on MSNBC, Weeknights at 8pm. Editor at Large at The Nation. Cubs fan. Instagram: chrisIhayes FB: https://t.co/niNbW3BZcv

2

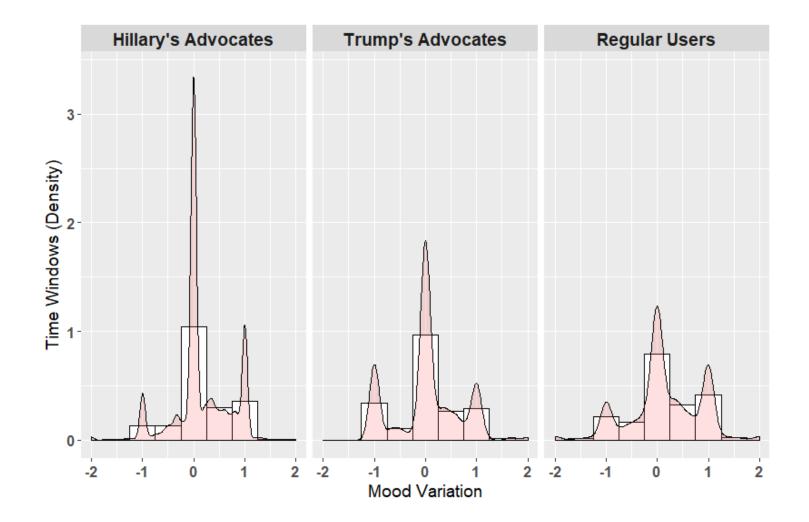
3

4

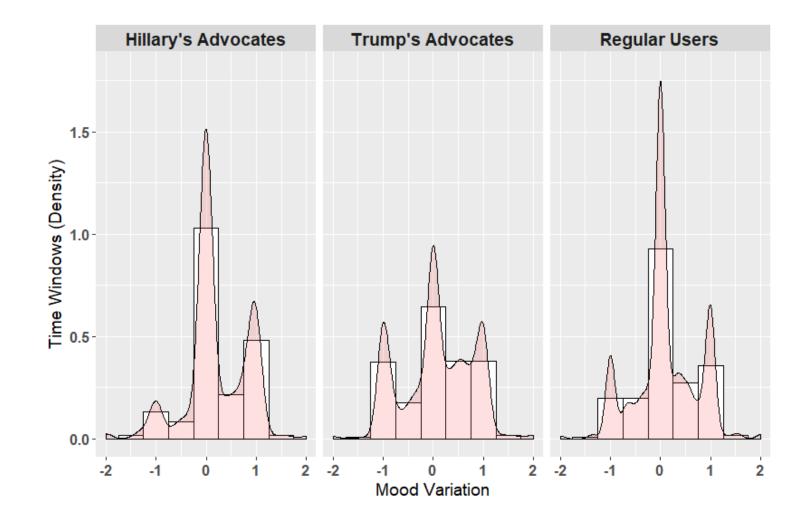
5

1

Mood variation – Hillary's tweets



Mood variation – Trump's tweets



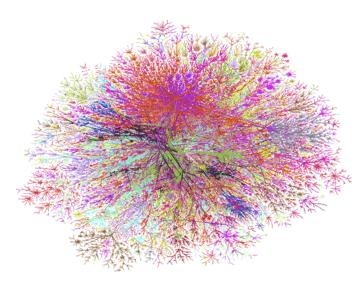
Main contributions

 Better understanding of the political engagement of users on online social networks

• How candidates may influence their voters using Twitter

How users interact with each other

Future work



Questions?

josemar.caetano@sga.pucminas.br